A Classification-Based Approach for Implicit Feature Identification

نویسندگان

  • Lingwei Zeng
  • Fang Li
چکیده

In recent years, sentiment analysis and opinion mining has grown to be one of the most active research areas. Most of the existing researches on feature-level opinion mining are dedicated to extract explicitly appeared features and opinion words. However, among the numerous kinds of reviews on the web, there are a significant number of reviews that contain only opinion words which imply some product features. The identification of such implicit features is still one of the most challenge tasks in opinion mining. In this paper, we propose a classification-based approach to deal with the task of implicit feature identification. Firstly, by exploiting the word segmentation, part-of-speech(POS) tagging and dependency parsing, a rule based method to extract the explicit featureopinion pairs is presented. Secondly, the feature-opinion pairs for each opinion word are clustered and the training documents for each clustered feature-opinion pair are then constructed. Finally, the identification of implicit features is formulated into a classification-based feature selection. Experiments demonstrate that our approach outperforms the existing methods significantly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems

Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

A Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification

In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...

متن کامل

Behavioral Analysis of Traffic Flow for an Effective Network Traffic Identification

Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...

متن کامل

A General Investigation on the Combination of Local and Global Feature Selection Methods for Request Identification in Telegram

Nowadays, the use of various messaging services is expanding worldwide with the rapid development of Internet technologies. Telegram is a cloud-based open-source text messaging service. According to the US Securities and Exchange Commission and based on the statistics given for October 2019 to present, 300 million people worldwide used telegram per month. Telegram users are more concentrated in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013